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Abstract. Dromion structures have been found in many(2 + 1)-dimensional models. The
similar structure in(3 + 1) dimensions is studied in this paper for a KdV-type equation,
wt + 6wxwy + wxxy + wxxxxz + 60w2

xwz + 10wzwxxx + 20wxwxxz = 0. Starting from the
bilinear form of the model, we found that there are five types of multi-dromion solutions for
its potentials, say,v1 ≡ wy . The first type of multi-dromion solution is driven by multi-camber
solitons with one of them being non-parallel to thex-axis. The second, third and fourth types
of multi-dromion solutions are driven by two camber solitons and one, two and three sets of
parallel plane solitons, respectively. The fifth type of multi-dromion solution is driven by one
set of parallel plane solitons, one set of camber solitons which are parallel to thex-axis and
one camber soliton which is non-parallel to thex-axis. Phase shifts may be involved in the
interactions among the multi-dromions for the first and fifth types of solutions. A single dromion
solution of the model may possess quite a free shape. For instance, the point-like dromions,
ring-type dromions, extended and sharp dromions and oscillatory dromions can be obtained by
selecting some arbitrary functions appropriately.

1. Introduction

Since the soliton phenomena were first observed by Scott Russell in 1834 [1] and the KdV
equation was solved by the inverse scattering method by Gardneret al in 1967 [2], the study
of solitons and the related issue of the construction of solutions to a wide class of nonlinear
equations has become one of the most exciting and extremely active areas of research
investigation. Early in the study of soliton theory, the main interests of scientists were
restricted to the(1+1)-dimensional cases because of the difficulty of finding the physically
significant high-dimensional solutions which are localized in all directions. Recently, the
study of soliton-like structures in high dimensions has attracted much more attention. In
particular, for some(2 + 1)-dimensional integrable models such as the Davey–Stewartson
(DS) [3], Kadomtsev–Petviashvilli (KP) [4] and Nizhnik–Novikov–Veselov (NNV) [5]
models, some types of solutions (called dromions) which are localized in all directions
are found by using some different approaches. Generally, a dromion solution occurs at
the cross point of two non-parallel line solitons. A line soliton is finite on an infinitely
long straight line while it exponentially decays in other directions. For the DS and NNV
equations, the dromion solutions can be obtained from two perpendicular line ghost solitons
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[3, 5] while for the KP equation the dromion solution can be driven by non-perpendicular
line solitons [4]. More recently, we found that the dromions in(2 + 1)-dimensions may
possess much more abundant structures [6, 7] because the(2 + 1)-dimensional integrable
models possess infinite-dimensional Kac–Moody–Virasoro type symmetries which contain
some arbitrary functions [8, 9]. For instance, for a(2 + 1)-dimensional KdV equation [6],
the multi-dromion solutions can be driven, not only by some perpendicular line and non-
perpendicular line ghost solitons, but also by curved line ghost solitons. A curved line
soliton is defined as a solution which is finite on a curved line and exponentially decays
away from the curve.

Now two interesting questions are: Can we find a(3 + 1)-dimensional dromion-like
structure which is localized in all directions? What kind of different properties of a(3+1)-
dimensional dromion (if there exists) will there be?

In this paper we study only the dromion-like structures for a non-integrable KdV-type
toy model:

wt + 6wxwy + wxxy + wxxxxz + 60w2
xwz + 10wzwxxx + 20wxwxxz = 0. (1)

When we restrictw to beingz-independent, equation (1) reduces to

wt + 6wxwy + wxxy = 0 (2)

which is a potential form of the equation (u = 3
2wx, b = 1)

ut + buxxy + 4buuy + 4bux∂
−1
x uy = 0 (3)

studied by Radha and Lakshmanan [10].
Equations (3) and (2) will reduce to the well known KdV and potential KdV equations,

respectively, fory = x. On the other hand, ifw is y-independent andz = x, equation (1)
becomes the usual potential form of the Caudrey–Dodd–Gibbon–Sawada–Kotera (CDGSK)
equation.

It is known that both the potential KdV equation and the potential CDGSK equation
can be bilinearized [11] by means of the transformation

w = (ln φ)x. (4)

There are several effective methods to bilinearize a nonlinear partial differential equation,
say, the Painlev́e singularity analysis [12] and direct bilinearization methods [13]. Using
any one of these methods, one can easily find that the same transformation (4) will change
the (3 + 1)-dimensional KdV equation (1) to a bilinear form,

(DxDt + D3
xDy + D5

xDz)φ · φ = 0 (5)

where the bilinearD-operators are defined by [11]

Dxφ · φ = (∂x − ∂x′)φ(x, y, z, t) · φ(x ′, y ′, z′, t ′)|(x,y,z,t)=(x ′,y ′,z′,t ′)

with x = (x, y, z, t). If we use the Painlev́e singularity analysis to bilinearize the model
we can prove that equation (1) does not possess the Painlevé property at the same time.

The bilinear method [11] has always been very useful for constructing soliton solutions
and has also shown its power in the study of dromion solutions [10]. In the next section,
we will analyse some interesting dromion structures of equation (1) by solving the bilinear
equation of (1). Similar to the dromion structure of the(2 + 1)-dimensional equation (3),
the dromion solutions exist for some potentials of (1), say,v1 ≡ wy andv2 ≡ wz, instead of
the fieldsw andu = wx . The result shows us that dromion structures in(3+1)-dimensional
cases are much more abundant than those in(2 + 1)-dimensional cases. For the KdV-type
equation (1), there are five types of multi-dromion solution. For a single dromion solution,
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it may have quite a free shape. For instance, some ring types of dromion which are finite
only on a closed curve are allowed while the ring dromion solutions have not yet been
found in (2 + 1) dimensions.

2. Dromion-like structures

To construct the dromion-like structure of (1), the simplest way is to solve its bilinear form
(5) by using a power series such as

φ = 1 + εφ(1) + ε2φ(2) + ε3φ(3) + · · · (6)

whereε is a small parameter. Substituting (6) into (5) and comparing the coefficients of
various powers ofε, we obtain the following sets of linear equations:

ε : φ
(1)
xt + φ(1)

xxxy + φ(1)
xxxxxz = 0 (7)

ε2 : φ
(2)
xt + φ(2)

xxxy + φ(2)
xxxxxz = 1

2(DxDt + D3
xDy + D5

xDz)φ
(1) · φ(1) (8)

etc.
Solving equation (7) we have

φ(1) =
N∑

i=1

exp(kix + fi(ξi1, ξi2, . . . , ξiM)) + h(y, z, t) (9)

wherefi andh are arbitrary functions of the indicated variables and

ξij = Pijy + Qijz − (k2
i Pij + k4

i Qij )t + xij (i = 1, 2, . . . , N, j = 1, 2, . . . , M)

(10)

with Pij , Qij andxij being arbitrary constants.
Similar to (2 + 1)-dimensional cases, some arbitrary functionsfi and h have been

included in the solution of (7). Differently, now the number of the arguments of arbitrary
functionsfi is an arbitrary positive integerM.

Substituting equation (9) with (10) into (8) etc, the solutions,φ(j)(j > 2), can be
determined recursively.

2.1. N = 1 case

To get ‘one’ soliton solution, we can takeN = 1 in (9). After substituting (9) withN = 1
into (8) etc, we find that if the arbitrary functionh is also fixed as an arbitrary function of
ξ1j shown by equation (10), the higher-order componentφ(j) can be taken as zero for all
j > 2. The fieldw reads

w = (ln φ)x = k1 exp(k1x + g1)

1 + h + exp(k1x + g1)
= 1

2

(
1 + tanh

1

2
(k1x + G)

)
(11)

where

G ≡ G(ξ11, ξ12, . . . , ξ1M) ≡ g1 − ln(1 + h). (12)

For the fieldw two arbitrary functionsg andh are degenerated to one arbitrary functionG.
It is clearly seen that as in the(2+ 1)-dimensional case (wz = 0 for (1)), the fieldw is

not exponentially localized in all directions. In the(2 + 1)-dimensional case, although the
physical field does not exponentially decay in all directions, one of its potentials(v ≡ wy)

decays in all directions [10, 7]. Similarly, we consider the properties of some potentials of
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the (3 + 1)-dimensional model (1), say,u ≡ wx , v1 ≡ wy and v2 ≡ wz. From equation
(11), we have

u = wx = 1
4k4

1 sech2 1
2(k1x + G) (13)

v1 = wy = 1
4k1

M∑
i=1

P1iGξ1i sech2 1
2(k1x + G) (14)

v2 = wz = 1
4k1

M∑
i=1

Q1iGξ1i sech2 1
2(k1x + G). (15)

To understand the meanings of the solutions (11) and (13)–(15), we first discuss some
special cases.

(i) Single camber soliton solutions.For the fieldw, solution (11) shows that there is a centre
curved surface,

S ≡ k1x + G(ξ11, ξ12, . . . , ξ1M) = 0. (16)

Apart from this centre camber, the fieldw exponentially tends to twodifferent values, 1 for
S → +∞ and 0 forS → −∞. We call this type of solution the camber kink for simplicity.

For the potentialu, solution (13) is finite on the camber (16) and decays exponentially
away from the camber. We call this type of solution the camber soliton or camber solitary
wave.

It is more interesting because, as in the(2 + 1)-dimensional case [7, 10], although the
solitary waves for fieldsu and w are not localized in all directions, their potentials may
exponentially decay in all directions. For the potentialv1 (or v2), the structure of the soliton
solution (14) (or (15)) is much more abundant.

(ii) Single point dromion solutions.For the potentialv1, if the arbitrary functionG is fixed
such that the following equation is satisfied

M∑
i=1

P1iGξ1i
= A1 sechn1ξ11 sechn2ξ12 ≡ H1 (17)

where n1 > 0, n2 > 0, and A1 is an arbitrary constant, we can get a single(3 + 1)-
dimensional dromion-like solution driven by two plane solitons and one camber soliton:

v1 = 1
4k1A1(sechn1ξ11)(sechn2ξ12)(sech2 1

2(k1x + G)). (18)

For M = 2, equation (17) can be integrated. After integrating equation (17) withM = 2,
the functionG in (18) can be written as

G = A1

2P11P12

∫ P12ξ11+P11ξ12

sechn1

(
1

2P12
(η + θ)

)
sechn2

(
1

2P11
(η − θ)

)
dη + f0(θ) (19)

θ ≡ P12ξ11 − P11ξ12. (20)

It is clearly seen that the soliton is localized in all directions and located at the cross point
of the two planes (which are parallel to thex-axis), ξ11 = 0, ξ12 = 0, and one camber (16)
with G being given by (19), i.e. the space position of the soliton is determined by

ξ11 = 0 ξ12 = 0 S = 0. (21)

The dromion-like structures for the potentialv2 are almost the same as those of the
potentialv1 after replacingP1i by Q1i in (17). So we discuss only the properties ofv1 later.
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Actually, two plane solitons in equation (19) can be replaced by two camber solitons
which are parallel to thex-axis because the argumentsξ11 andξ12 in the right-hand side of
(17) can be replaced by two arbitrary functions:

ξ11 → h1(ξ11, ξ12, . . . , ξ1M) ≡ h1, ξ12 → h2(ξ11, ξ12, . . . , ξ1M) ≡ h2. (22)

That is to say, a(3 + 1)-dimensional dromion which decays in all directions can be driven
not only by two plane (ξ11 = 0, ξ12 = 0) solitons and one camber(S = 0) soliton but also
by three camber solitons if we selecth1 andh2 such that the equation system

h1 = 0 h2 = 0 S = 0 (23)

possesses a unique solution for the space variables(x, y, z). Two camber (h1 = 0, h2 = 0)
solitons are parallel to thex-axis while the other one (S = 0) is not.

In (2+ 1) dimensions, a dromion solution is driven by two line (curved line or straight
line) solitons. The interaction between two line solitons (finite at an infinitely long line)
makes two line solitons disappear (become ghost solitons) and a dromion survives at the
cross point of two line solitons. In(3 + 1) dimensions, a point-like dromion solution is
driven by three surface (camber or plane) solitons. The interaction among three camber
solitons survives a point-like dromion which is located at the cross point of three surfaces
while the original camber solitons become ghosts.

From equation (14) we know that if the functionG is selected to be linear in the variables
y and z (i.e. ξ1i), we cannot get a dromion-like solution. In other words, we cannot get
a (3 + 1)-dimensional soliton-like solution which is localized in all directions driven by
three plane solitons by selecting the arbitrary functionG. At least one camber soliton is
necessary to construct a(3 + 1)-dimensional dromion-like solution from equation (14).

(iii) Single ring dromion solutions.In (2+ 1)-dimensional cases [3–7, 10], we have not yet
found a ring-type soliton solution. We call a solution a ring soliton to mean that a solution
is finite on a closed curve and decays away from the curve. It is quite interesting that, for
the (3+ 1)-dimensional model (1), a ring soliton can be constructed easily by selecting the
arbitrary functionG appropriately, say,

M∑
i=1

P1iGξ1i
= A2 sechnh(ξ11, ξ12, . . . , ξ1M) ≡ H2 (24)

where the camber

h ≡ h(ξ11, ξ12, . . . , ξ1M) = 0 (M > 2) (25)

is the surface of a cylinder. In this case, we get a ring dromion solution:

v1 = 1
4k1A2(sechnh)(sech2 1

2(k1x + G)). (26)

That is to say, a ring dromion is driven by a cylinder(h = 0) soliton which is parallel to
the x-axis and a camber (S = 0) soliton. The ring dromion is located at the intersection of
the cylinder and the camber.

The simplest selection ofh in (26) for a ring dromion solution is

h =
M∑
i=1

aiξ
2
1i − C2 (M > 2) (27)

with arbitrary constantsai and C. For M = 2 andh being given by equation (27), the
function G in (26) reads

G = A2

2P11P12

∫ P12ξ11+P11ξ12

sechn
(

a1

4P 2
12

(η + θ)2 + a2

4P 2
11

(η − θ)2

)
dη + f0(θ) (28)

wheref0(θ) is an arbitrary function ofθ andθ is given by equation (20).
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(iv) Extended and sharp dromions.BecauseG is an arbitrary function in (14), the dromions
may decay much slower than an exponential or much faster than an exponential in they-
andz-directions. For instance, if we select that the functionG satisfies

M∑
i=1

P1iGξ1i
=

( M∑
i=1

2N1∑
j=0

aij ξ
j

1i

)−1( M∑
i=1

2N2∑
j=0

bij ξ
j

1i

)−1

≡ g1g2 ≡ H3 (29)

with g1 and g2 being analytical with respect to(x, y, z, t) and aij and bij being arbitrary
constants, we get an extended point dromion (or ring dromion forg2 = 1) solution which
decays exponentially in thex-direction and decays rationally in they- andz-directions. If
we select the functionG as
M∑
i=1

P1iGξ1i
= A

(
sechn1

(
cosh

M∑
i=1

N1∑
j=0

aij ξ
j

1i

))(
sechn2

(
cosh

M∑
i=1

N1∑
j=0

aij ξ
j

1i

))
≡ H4

(30)

we get a sharp point or ring dromion solution which decays very much quicker than an
exponential in they- andz-directions.

(v) Oscillatory dromions.If some oscillatory functions are included in the arbitrary function
G, say,

M∑
i=1

P1iGξ1i
= A5 sin(h(ξ11, ξ12, . . . , ξ1M))Hj ≡ H5 (31)

whereHj , (j = 1–4) are defined in equations (17), (24), (29) and (30), respectively, any
type of dromion (point dromion, ring dromion, extended and sharp dromion) may have an
oscillatory structure both in amplitude and in phase.

(vi) The first type of multi-dromion.Generally, the dromion-like solution (14) exhibits the
first type of multi-dromion structure. Any number of point dromions, ring dromions, extend
dromions, sharp dromions and oscillatory dromions can be combined in some different
ways because of the arbitrariness of the functionG. The first simple way is combining
them almost linearly,

M∑
i=1

P1iGξ1i
=

5∑
i=1

Jij∑
j=1

AijHij ≡ H6 (32)

whereJij are arbitrary integers,Aij are arbitrary constants andHij possess the form ofHi

for all j . The corresponding form for the potentialv1 reads

v1 = 1
4k1H6 sech2 1

2(k1x + G). (33)

If the multi-soliton solutions are combined as in equations (32) and (33), we know that all the
effects of the nonlinear interactions among dromions are included only in one camber soliton
which is not parallel to thex-axis. If we are sitting on the camber,S(≡ k1 + G = 0), to
observe the interactions of the multi-dromions shown by (33), we will see that the dromions
interact linearly. In other words, there is no phase shift involved in the interactions of this
kind of dromion.

The second simple way to construct the multi-dromion solution from the solution (14)
is to select

M∑
i=1

P1iGξ1i
= H7(X1, X2, . . . , XD, T ) ≡ H7 (34)
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as a multi-soliton solution of any (D + 1)-dimensional integrable model (we call this
model a seed model), say,(1 + 1)-dimensional KdV and/or(2 + 1)-dimensional KP
equations, with ‘spacetime’ variablesXi ≡ Xi(ξ11, ξ12, . . . , ξ1M), i = 1, 2, . . . , D, and
T ≡ T (ξ11, ξ12, . . . , ξ1M) being arbitrary functions ofξ1j , j = 1, 2, . . . , M. Now if we are
again sitting on the camber,S(≡ k1 + G = 0), to observe the interactions of the multi-
dromions constructed from the seed models, we will see that the interaction among dromions
looks like that of the seed models.

2.2. N=2 case

From the discussions of the last subsection, we know that the first type of multi-dromion
solution is driven by only one camber ghost soliton which is non-parallel to thex-axis while
all the other ghost camber solitons are parallel to thex-axis. Now an interesting question
is: Can we find other types of dromion solutions which are driven by more camber solitons
which are non-parallel to thex-axis? To find these kinds of solutions, we should takeN in
equation (9) to be larger than one.

Substituting equation (9) withN = 2 into (8) etc, we find thatφ may have the following
form,

φ = h + exp(k1x + g1) + exp(k2x + g2) + h1 exp(k1x + k2x + g1 + g2) (35)

if four functionsh ≡ h(y, z, t), h1 ≡ h1(y, z, t), g1 ≡ g1(y, z, t) andg2 ≡ g2(y, z, t) satisfy
some constraints. Here are some special examples.

(vii) The second type of multi-dromion.If the functionsh, g1 andg2 are all restricted to be
arbitrary functions of a single variable

ξ = z − (k2
1 + k2

2)y + k2
1k

2
2t (36)

we can takeh = 1 without loss of generality and then the interaction factor between two
camber solitons,h1, is related tog1 andg2 by

h1 = exp(−g1 − g2)

×
(

C +
∫ ξ (k1 − k2)(2k2 − k1)(k2 − 2k1)(g1ξ ′ − g2ξ ′)

(k1 + k2)(2k2 + k1)(2k1 + k2)
exp(g1 + g2) dξ ′

)
(37)

for

k2 6= −k1 k2 6= −2k1 k1 6= −2k2 (38)

whereC is an arbitrary constant. The corresponding soliton solutions for the fieldsw, u

and the potentialv1 read

w = k1J1 + k2J2 + (k1 + k2)h1J1J2

1 + J1 + J2 + h1J1J2
(Ji ≡ exp(kix + gi), i = 1, 2) (39)

u = (h1(k1 + k2)
2 + (k1 − k2)

2)J1J2 + k2
1J1 + k2

2J2 + h1k
2
1J1J

2
2 + h1k

2
2J2J

2
1

(1 + J1 + J2 + h1J1J2)2
(40)

v1 = −(k2
1 + k2

2)

(1 + J1 + J2 + h1J1J2)2
{g1ξ [k1J1 + (k1 − k2 + h1(k1 + k2 + k1J2))J2J1]

+g2ξ [k2J2 + (k2 − k1 + h1(k2 + k1 + k2J1))J2J1]

+h1ξ J1J2(k1 + k2 + k1J2 + k2J1)}. (41)

In this case, after selectingg1, g2 andh1 appropriately for the potentialv1, we can get the
second type of multi-dromion driven by multi-parallel plane solitons (which are determined
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by the functionsg1, g2 and h1) and two camber solitons (which are non-parallel to the
x-axis and described by the curved surfacesS1(≡ k1x + g1 = 0) andS2(≡ k2x + g2 = 0)).
Because these parallel plane solitons move at thesamespeed perpendicular to thex-axis, the
dromions cannot meet each other. Different from the first type of multi-dromion solution,
the ring type of dromion is not allowed for the second type of multi-dromion solution
because only one argument is included in the functionsg1, g2 andh1.

(viii) The third type of multi-dromion.If h and h1 do not possess the same argument as
those of the functionsg1 andg2, we find thath andh1 can be taken as

h = 1 h1 = a12 = constant. (42)

In this case, we have two subcases.
(a) Multi-dromions. The functionsg1 = g1(ξ1) and g2 = g2(ξ2) are two different

arbitrary functions of the arguments

ξ1 = P1y + Q1z − (k2
1P1 + k4

1Q1)t + x10 (43)

and

ξ2 = P2y + Q2z − (k2
2P2 + k4

2Q2)t + x20 (44)

where the constantsP1, P2, Q1 andQ2 are related to the constantsk1, k2 anda12 by

P1 = (a12 − 1)(4k4
1k2 + 10k2

1k
3
2 + k5

2) + (a12 + 1)(10k3
1k

3
2 + 5k1k

4
2) (45)

Q1 = 2(1 − a12)k
2
1k2 − 3(a12 + 1)k1k

2
2) + (1 − a12)k

3
2 (46)

P2 = (a12 − 1)(4k4
2k1 + 10k2

2k
3
1 + k5

1) + (a12 + 1)(10k3
2k

3
1 + 5k2k

4
1) (47)

Q2 = 2(1 − a12)k
2
2k1 − 3(a12 + 1)k2k

2
1) + (1 − a12)k

3
1. (48)

The corresponding fieldsw, u andv1 are

w = k1J1 + k2J2 + (k1 + k2)a12J1J2

1 + J1 + J2 + a12J1J2
(Ji ≡ exp(kix + gi), i = 1, 2) (49)

u = (a12(k1 + k2)
2 + (k1 − k2)

2)J1J2 + k2
1J1 + k2

2J2 + a12k
2
1J1J

2
2 + a12k

2
2J2J

2
1

(1 + J1 + J2 + a12J1J2)2
(50)

v1 = P1g1ξ1[k1J1 + (k1 − k2 + a12(k1 + k2 + k1J2))J2J1]

(1 + J1 + J2 + a12J1J2)2

+P2g2ξ2[k2J2 + (k2 − k1 + a12(k2 + k1 + k2J1))J2J1]

(1 + J1 + J2 + a12J1J2)2
. (51)

For the potentialv1, the third type of multi-dromion solutions can be obtained from (51) by
selecting the functionsg1 andg2 suitably, say,

giξ =
M∑

m=1

Am sechnm(Bmξi + ξ0m) (i = 1, 2)

with arbitrary constantsAm, Bm, ξ0m andnm > 0. This type of multi-dromion solution is
driven by two sets of plane solitons and two camber solitons. Although the planes in the
same set are parallel, two sets of plane solitons are not parallel because the arguments of
the functionsg1 and g2 are different. Two camber solitons are not parallel to thex-axis.
Similar to the second type of multi-dromion solution, the ring type of dromion is also not
allowed for this kind of solution because every one of the functionsg1 and g2 is only a
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function of a single variable. In this case, there is also no phase shift among the interactions
of the multi-dromions. If we are sitting on the space curve determined by

S1 ≡ k1x + g1 = 0 S2 ≡ k2x + g2 = 0

we can see that the solitons determined byg1ξ and g2ξ interact linearly. That means the
only nonlinear effect of the plane solitons is of deforming the shape of the curve.

(b) Two plane soliton solutions. If the functionsg1 and g2 are fixed as linear in
spacetime, i.e. for the plane solitons,

g1 = P1y + Q1z − (k2
1P1 + k4

1Q1)t + x10 (52)

g2 = P2y + Q2z − (k2
2P2 + k4

2Q2)t + x20 (53)

the constantsP1, P2, Q1 andQ2 are all free while the interaction constant of two solitons
should be fixed as

a12 = (k1 − k2)[((k1 − k2)
4 − k4

2)Q2 − ((k1 − k2)
4 − k4

1)Q1 + k1(k1 − 2k2)P2

+k2(2k1 − k2)P1]{(k1 + k2)[((k1 + k2)
4 − k4

2)Q2 + ((k1 + k2)
4 − k4

1)Q1

+k1(k1 + 2k2)P2 + k2(2k1 + k2)P1]}−1. (54)

Correspondingly, the general two plane soliton solutions for the fieldsw, u andv1 are

w = k1J1 + k2J2 + (k1 + k2)a12J1J2

1 + J1 + J2 + a12J1J2
(Ji ≡ exp(kix + gi), i = 1, 2) (55)

u = (a12(k1 + k2)
2 + (k1 − k2)

2)J1J2 + k2
1J1 + k2

2J2 + a12k
2
1J1J

2
2 + a12k

2
2J2J

2
1

(1 + J1 + J2 + a12J1J2)2
(56)

v1 = P1[k1J1 + (k1 − k2 + a12(k1 + k2 + k1J2))J2J1]

(1 + J1 + J2 + a12J1J2)2

+P2[k2J2 + (k2 − k1 + a12(k2 + k1 + k2J1))J2J1]

(1 + J1 + J2 + a12J1J2)2
. (57)

It is clear that in this case, only two plane solitons are included in the solutions. There is
not any kind of dromion structure for all fieldsw, u andv1.

(ix) The fourth type of multi-dromion.For k2 = −2k1, the functionsh andh1 can only be
arbitrary functions of a single variable

ξ1 = z − 5k2
1y + 4k4

1t (58)

while for the functionsg1 andg2, we have two subcases.
(a) If we selecth1 to be proportional to the inverse of the functionh, i.e.

h1 = h1(ξ1) = ah−1 (a = arbitrary constant) (59)

then

g1 = g1(ξ2) = g1(z − 10k2
1y + 9k4

1t) (60)

and

g2 = g2(ξ3) = g2((a − 5)z − 5k2
1(a − 15)y + k4

1(4a − 70)t) (61)

are two arbitrary functions of two different argumentsξ2 andξ3. The corresponding solutions
for w, u andv1 read

w = −k1h(−J1 + 2J2 + aJ1J2)

h2 + h(J1 + J2) + aJ1J2
(Ji ≡ exp(kix + gi), i = 1, 2) (62)



5998 Sen-yue Lou

u = k2
1h

(a + 9)hJ1J2 + h2(J1 + 4J2) + a(J1J
2
2 + 4J2J

2
1 )

(h2 + h(J1 + J2) + aJ1J2)2
(63)

v1 = k3
1

(h2 + h(J1 + J2) + aJ1J2)2
{5(a − 15)g2ξ3[2h3J2 + ((a + 3)h2 + 2ahJ1)J2J1]

+10g1ξ2[−h3J1 + ((a − 3)h2 + ahJ2)J2J1]

+5h1ξ1[h2(J1 − 2J2) − aJ1J2(2h − J2 + 2J1)]}. (64)

Now the fourth type of multi-dromion solution can be obtained by selecting the arbitrary
functionsg1, g2 andh for the potentialv1. Because the arguments of the functionsg1, g2

andh are all different, the fourth type of multi-dromion is driven by three sets of parallel
plane solitons and two camber solitons which are also non-parallel to thex-axis. The planes
are parallel in the same set and non-parallel in different sets. In this case, the ring type of
dromion is not allowed and there is no phase shift involved in the interaction of this type
of multi-dromion.

(b)

h1 = h1(ξ1) h = h(ξ1) g1 = g2 = g = g(ξ1). (65)

This subcase may be considered as a special case of (i) after relaxation of the constraint
condition (37) such thath1 is an arbitrary function ofξ1 while h can be fixed as unity again.

(x) The fifth type of multi-dromion.For k2 = −k1, we can takeh1 = 0 simply. In this case,
we find that the functionh can also be an arbitrary function of the multi-variables,

ξi = Piy + Qiz − (k2
1Pi + k4

1Qi)t + x0i i = 1, 2, . . . , M (66)

wherePi , Qi andx0i are arbitrary constants whileg1 andg2 can only be arbitrary functions
of a single variableξ1 = z − 5k2

1y + 4k4
1t . The corresponding solutions for the fieldsw, u

andv1 have the following forms:

w = − k1 sinhS

G + coshS
G ≡ 2h exp

1

2
(−g1 − g2) S ≡ k1x + 1

2
(g1 − g2) ≡ k1x + g

(67)

u = −k2
1(G coshS + 1)

(G + coshS)2
(68)

v1 = −5k3
1gξ1(G coshS + 1) + k1 sinhS

∑M
i=1 PiGξi

(G + coshS)2
. (69)

The fifth type of multi-dromion solution (69) is driven by one set of parallel plane solitons
(which are determined by the arbitrary functiong) and the multi-camber solitons. Only
one of the camber solitons which is determined by the camberS = 0 is non-parallel to the
x-axis. Similar to the first type of multi-dromion soliton solution, one set of camber solitons
which are given by the selecting of the functionG can possess quite free shapes, say, a
cylinder shape. Different from the first type of multi-dromion solution, the existence of the
camber solitons (which are parallel to thex-axis and determined by the functionG) does
not deform the shape of the camberS, although the multi-parallel plane solitons (which is
determined by the functiong) do. Different from all other types of multi-dromion solutions,
three non-parallel plane solitons can be used to construct a significant point-like dromion
solution. If we takeg = 0, andG is given by any one of equations (19), (29) and (30),
a point-like dromion is obtained. But now the dromions are different from those obtained
from the first type of multi-dromion solution. In this case the single dromion solution is
anti-symmetric with respect to the camberS = 0 because it possesses a different sign for
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S > 0 andS < 0, while the dromion solution of the first type is symmetric with respect to
the camberS = 0.

Although the multi-camber solitons can be taken as in the first case, say,
∑M

i=1 PiGξi
≡

Hj , j = 1, 2, . . . , 7, the nonlinear interactions among them are much more complicated
than those of in the first case becauseG appears not only in the numerator of (69), but also
in the denominator. The phase shifts among the dromions are dependent on the selected
multi-camber soliton solutions,H7, of the seed models.

2.3. N > 3 case

From the results of the last two subsections, we know that the rich structures of the
dromion solutions of equation (1) are strongly dependent on the arbitrariness of the functions
appearing in the solutions. This arbitrariness is reduced sharply asN increases. ForN = 1,
the functions are arbitrary with respect to anarbitrary number (M) of arbitrary planes
(no constraints on constantsk1, P1i andQ1i) with argumentsξij . WhenN is increased to
N = 2, every function is arbitrary only forsingle andspecial planearguments although the
different functions may possess different plane arguments.

The further consideration will show us that the arbitrariness of functions will disappear
for N > 3. ForN = 3, a special three-plane soliton solution with

φ = 1 +
3∑

i=1

expξi +
3∑

j<i

aij exp(ξi + ξj ) + a123exp(ξ1 + ξ2 + ξ3) (70)

ξi = kix + Piy + Qiz − (k2
i Pi − k4

i Qi)t + ξ0

aij = (kj − ki)[((kj − ki)
4 − k4

i )Qi − ((kj − ki)
4 − k4

j )Qj + kj (kj − 2ki)Pi

+ki(2kj − ki)Pj ]{(kj + ki)[((kj + ki)
4 − k4

i )Qi + ((kj + ki)
4 − k4

j )Qj

+kj (kj + 2ki)Pi + k2(2kj + ki)Pj ]}−1 (71)

and a123 = a12a13a23 can exist if an additional constrained condition among constantski ,
Pi and Qi is satisfied. If we takeQi = 0, i.e. the field isz-independent, the constrained
condition reads

a12(k1 + k2)[(k
2
2 + 2k1k2 − 3k3(k1 + k2) + 3k2

3)P1 + (k2
1 + 2k1k2 − 3k3(k1 + k2) + 3k2

3)P2

+(−2k2
3 + 3k3(k1 + k2) − (k1 + k2)

2)P3]

+a13(k1 + k3)[(k
2
3 + 2k1k3 − 3k2(k1 + k3) + 3k2

2)P1

+(k2
1 + 2k1k3 − 3k2(k1 + k3) + 3k2

2)P3

+(−2k2
2 + 3k2(k1 + k3) − (k1 + k3)

2)P2]

+a23(k3 + k2)[(k
2
2 + 2k3k2 − 3k1(k3 + k2) + 3k2

1)P3

+(k2
3 + 2k3k2 − 3k1(k3 + k2) + 3k2

1)P2

+(−2k2
1 + 3k1(k3 + k2) − (k3 + k2)

2)P1] = 0. (72)

We do not write down the general constrained condition forQi 6= 0 because of its complexity
(over three printed pages).

ForN > 4, much more constrained conditions should be satisfied for multi-plane soliton
solutions. For instance, there are 20 complicated constrained conditions for 12 parameters
ki , Pi andQi of the four-plane soliton solution. These overdetermined constrained equations
have no solutions except for the casePi = aki andQi = bki for all i which corresponds
to the fact that equation (1) possesses a(1 + 1)-dimensional integrable reduction [14],
u = U(X, t), with space variableX = x + ay + bz. Usually, an integrable model possesses
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the Painlev́e property and generalized multi-plane soliton solutions [15]. However, for the
(3 + 1)-dimensional KdV-type equation (1), we do not have both the Painlevé property
and the generalized three- or more-plane soliton solutions. This fact suggests to us that the
model (1) may be non-integrable.

3. Summary and discussion

In summary, the dromion-like structure of a(3 + 1)-dimensional model is much more
abundant than those of(2 + 1)-dimensional cases. For the KdV-type equation (1), a single
dromion may have quite a free shape. For example, after selecting the arbitrary functions
appropriately, we can get point-like dromions, ring type dromions, extended and sharp
dromions and oscillatory dromions. For the multi-dromion solutions, there are five types of
structures.

The first type of multi-dromion is driven by multi-camber ghost solitons. One of the
camber solitons is not parallel to thex-axis while the others are all parallel to thex-
axis. The point-like dromion is located at the cross point of three cambers while the ring
dromion solution is driven by a cylinder soliton (which is parallel to thex-axis) and the
camber soliton (which is not parallel to thex-axis) and located at the intersection line of the
cylinder and the camber. The multi-soliton solutions of any(D +1)-dimensional integrable
model can be used to construct the multi-camber soliton solutions which are parallel to the
x-axis. The second type of multi-dromion solution is driven by one set of parallel plane
solitons and two camber solitons. Only the camber solitons are not parallel to thex-axis.
The set of plane solitons is described by three arbitrary functions. All three functions have
the same single argument. The third type of multi-dromion is driven by two sets of parallel
plane solitons and two camber solitons which are not parallel to thex-axis. Two sets of
plane solitons are determined by two arbitrary functions. Every function is a function of a
single argument only, but the arguments for different functions are not the same. The fourth
type of multi-dromion is driven by three sets of plane solitons and two camber solitons.
Three sets of plane solitons are described by three arbitrary functions with three different
arguments although every function is only a function of a single variable. The ring type of
dromion is not allowed for the second, third and fourth types of solutions.

The fifth type of multi-dromion solution is driven by one set of plane solitons (described
by one arbitrary function of a single variable), a set of camber solitons which are parallel to
thex-axis (and described by an arbitrary function of multi-arguments) and a camber soliton
which is non-parallel to thex-axis and non-symmetric with respect to the camber. The
ring type of dromion can also be constructed from the fifth type of solution but the ring
dromions in this case are different from those of the first type of solution. The first type of
ring dromion solution is symmetric with respect to the camberS = 0 and the existence of
the ring dromion will deform the shape of the camber, while the fifth type of ring dromion
solution is antisymmetric with respect to the camber and the existence of the ring dromion
will not deform the shape of the camber.

For the first and fifth types of the multi-dromion solutions, some different types of phase
shifts may be involved in their interactions because the sets of the camber solitons which
are parallel to thex-axis can be selected as the multi-soliton solutions of any(D + 1)-
dimensional integrable seed models. However, for other types of multi-dromion solutions,
there is no phase shift involved in their interactions. The only effects of the nonlinear
interactions among the camber and plane solitons of the other types of the multi-dromion
solutions are to deform the shape(s) of the camber soliton(s) which is(are) non-parallel to
the x-axis.
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In (2 + 1)-dimensional cases, we have not yet found a ring type of dromion solution.
Although the ring type of dromion solution can be found in(3 + 1)-dimensional cases, we
have not found a bubble-like dromion solution which is finite at a closed surface and decays
away from the surface in(3 + 1) dimensions.

All the multi-dromion solutions reported here for the KdV-type equation (1) are driven
by multi-camber (and plane) solitons. The abundant structure of the dromions is strongly
dependent on the existence of the arbitrary functions in the solutions. AsN increases
to N > 3 this arbitrariness will disappear. Even for the three-plane soliton solution, the
planes cannot be arbitrary because the model is non-integrable. If one can find some
(3+ 1)-dimensional integrable models, we believe that at least some of the similar dromion
solutions can be found because some arbitrary functions should be found in the symmetry
algebras of high-dimensional integrable models [8, 9, 16, 17].

The dromion solutions have been found in many physically significant(2 + 1)-
dimensional models such as the DS, KP and NNV equations. From the discussions of
this paper for the(3+ 1)-dimensional KdV-type toy model, we have seen that the dromion
structures can also exist. We hope that future study will find the dromion structures in the
real physical(3 + 1)-dimensional models.
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